Übung zur Lehrveranstaltung

Grundlagen Semantic Web Seminar für Computerlinguistik, Universität Heidelberg

Sebastian Rudolph Wintersemester 2009/10 http://semantic-web-grundlagen.de

Übung 4: SPARQL

Aufgabe 4.1 Consider the following RDF document with information about celestial bodies.

```
@prefix ex: <http://example.org/> .
         ex:radius "1.392e6"^^xsd:double;
ex:Sun
         ex:satellite ex:Mercury, ex:Venus, ex:Earth, ex:Mars .
ex:Mercury ex:radius
                          "2439.7"^^xsd:double .
ex:Venus
            ex:radius
                          "6051.9"^^xsd:double .
ex:Earth
            ex:radius
                          "6372.8"^^xsd:double :
            ex:satellite
                          ex:Moon .
                          "3402.5"^^xsd:double :
ex:Mars
            ex:radius
            ex:satellite
                          ex:Phobos, ex:Deimos .
ex:Moon
            ex:name
                          "Mond@de", "Moon@en";
                          "1737.1"^^xsd:double .
            ex:radius
                          "Phobos" .
ex:Phobos
            ex:name
ex:Deimos
                          "Deimos" .
            ex:name
```

Specify SPARQL queries which yield the following results in the form of a table.

- Objects which orbit around the sun or around a satellite of the sun.
- Objects with a volume greater than $2 \cdot 10^{10}$ (km³) together with the object if it exists of which they are a satellite. Assume for this that all celestial bodies are spherical.
- Objects with a satellite for which an English name is given, and which furthermore are satellites of an object with diameter greater than 3000 (km).
- Objects with two or more satellites. Assume for this that different URIs denote different objects.

Aufgabe 4.2 Translate the queries from Exercise 4.1 into expressions in SPARQL algebra. You can simplify Join expressions with the empty graph Z as parameter.

Aufgabe 4.3 Compute the solutions to the expressions from Exercise 4.2 with respect to the knowledge base from Exercise 4.1 step by step as in Figure ?? on page ??.

Aufgabe 4.4 It is possible to use SPARQL for searching for elements for which certain information is *not* given. This is done by combining filters with optional graph patterns.

Formulate a query which asks for all celestial bodies which do not have a satellite. Assume for this that the knowledge base from Exercise 4.1 has been completed with triples which assign to every celestial body the rdf:type CelestialBody.

Aufgabe 4.5 The game Sudoku is about completing incomplete tables with numbers while respecting certain rules. We consider the following simple 4×4 Sudoku:

		3
		4
2		
3		

You have to fill in numbers with values 1 to 4 in the empty slots in the table so that no number occurs twice in any row or any column, and so that no number is duplicated within any of the marked 2×2 squares.

We now want to use SPARQL for solving this Sudoku, i.e. we want to obtain all possible solutions by means of answers to a SPARQL query. In order to do this, set up a suitable RDF document and SPARQL query.

Aufgabe 4.6 This exercise focuses on the use of modifiers in SPARQL. Consider the following RDF document:

Which result would each of the following SPARQL queries return for this RDF input?

```
1. SELECT ?s ?v WHERE { ?s <http://example.org/value> ?v }
   ORDER BY ?v
```

- 2. SELECT ?s WHERE { ?s <http://example.org/value> ?v }
 ORDER BY ?v
- 3. SELECT ?s WHERE { ?s <http://example.org/value> ?v }
 ORDER BY DESC(?v) LIMIT 2

4. SELECT DISTINCT ?s WHERE { ?s <http://example.org/value> ?v }
 ORDER BY ?v

Which result would you expect the last query to return when LIMIT 1 is added?