

NIFB

Semantic Web Technologies II ss 2009

08.07.2009 KASWS – Karlsruhe Semantic Web Services

Dr. Sudhir Agarwal Dr. Stephan Grimm Dr. Peter Haase PD Dr. Pascal Hitzler Denny Vrandecic Martin Junghans

Agenda

- Repetition
- Shortcomings of existing approaches
- KASWS Karlsruhe Semantic Web Services

Agenda

Repetition

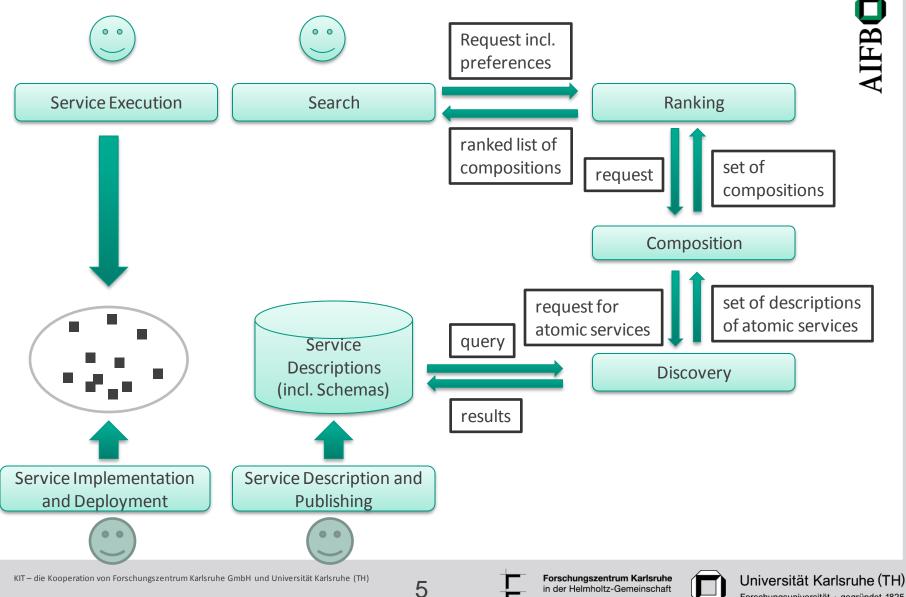
- Shortcomings of existing approaches
- KASWS Karlsruhe Semantic Web Services

Principle

Web services

Repetition

- Standards
- Semantic Web services
 - Motivation
 - Need for a formalism to describe Web services
 - Discovery, ranking, composition



A Simple Scenario

Forschungsuniversität • gegründet 1825

Agenda

Carlsruhe Institute of Technology

- Repetition
- Shortcomings of existing approaches
- KASWS Karlsruhe Semantic Web Services

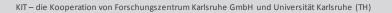
Shortcomings of Existing Approaches

- Existing approaches
 - OWL-S (Semantic Markup for Web Services)
 - WSMO
 - WSMO-Lite
 - Only briefly discussed in this lecture

OWL-S

Karlsruhe Institute of Technology

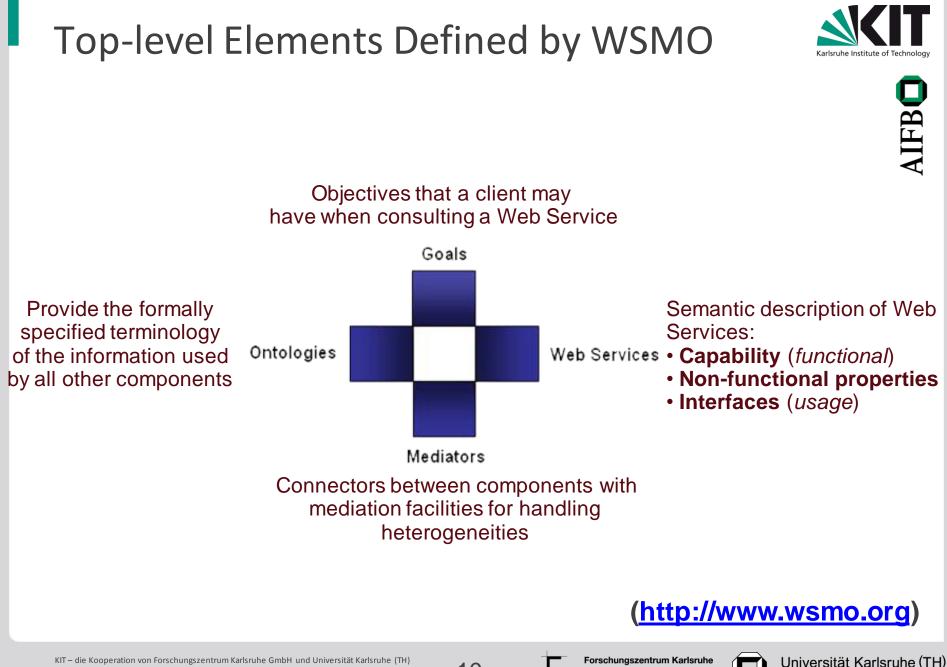
- Description of semantic Web services
- Ontology on top of Web Ontology Language (OWL)
- Types of knowledge about services
 - Service profile
 - Service functionality
 - Process model
 - Interaction with services
 - Input, output, pre-conditions, results
 - Service grounding
 - Connection to WSDL service description



No concrete formalism for pre-conditions, results

Shortcomings of OWL-S

- OWL, OWL-S have description logics (DL) semantics
 - DL reasoners are not capable to capture dynamics
 - DL cannot handle changing knowledge bases contemporarily
- Web services are dynamic in nature (processes)
 - Variables are essential for process modeling
 - E.g., a variable (value can be changed) cannot be modeled by DLs

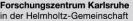


Forschungsuniversität • gegründet 1825

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Drawbacks of WSMO

- As OWL-S, WSMO uses ontologies to model processes
 - DL semantics
 - Can't reason about variables and state changes
- No practical support for non-functional properties
- Limited to classical Web services only
 - No support for Web sites
- Multiple environments not supported
 - A process triggered by invoking a Web service may run partially outside the Web



KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

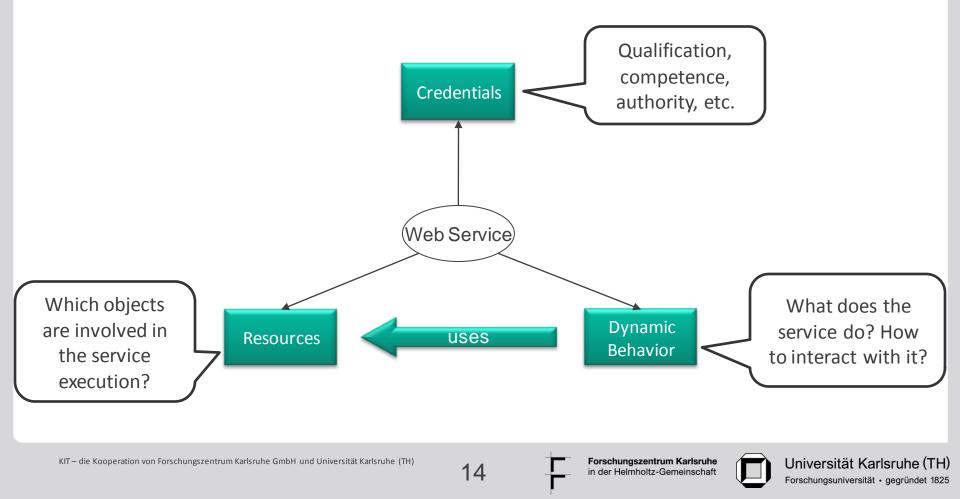
12

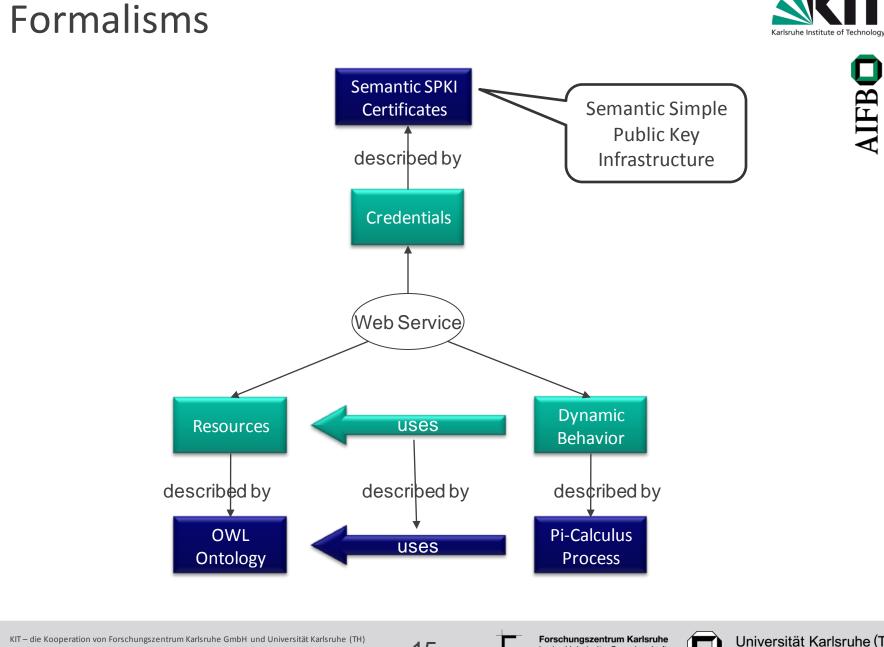
WSMO-Lite

- WSMO-Lite
 - Service ontology
 - Defines service model that can be used with SAWSDL
 - restricts values of the <model Reference> attribute for various SAWSDL elements
 - Also applicable to hRESTS + MicroWSMO
- Shortcomings
 - Similar to previously mentioned ontology-based approaches
 - No reasoning support for dynamics

Agenda

- Repetition
- Shortcomings of existing approaches
- KASWS Karlsruhe Semantic Web Services




KASWS Conceptual Model

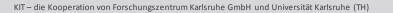
AIFB

- Extended notion of Web service
 - WSDL and RESTful Web services, Web sites, Web pages

OWL Recap

FB

- Domains modeled in terms of concepts and relations
- Concepts can form sub-class hierarchies
- Attributes of concepts link them with literal values
- Relations define connections between concepts
- Individuals instantiate the concepts
- Briefly: OWL allows modeling of objects of a domain
- OWL not suitable for modeling processes
 - Can not capture the semantics of dynamics
 - E.g., changing states and order of activities



Introduction to Pi-Calculus

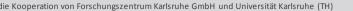
AIFB

- One of the most widely known process algebras
 - Mainly developed by Robin Milner (Turing Award 1991)
 - Extension of Calculus of Communicating Systems (CCS)
- Different variants of Pi-Calculus for different purposes
 - \rightarrow We will use our own variant (KASWS)

Introduction to Pi-Calculus

- Pi-Calculus roughly offers
 - Communication activities

- **IFB**
- Communication takes place by exchanging messages over some communication channel
- Communication channels can be treated as data \rightarrow enables modeling of flexible processes whose configurations can change at run time
- Control constructs
 - Activities can be performed
 - sequentially,
 - in parallel, or
 - by choice (deterministic or non-deterministic)


Input

- Communication activity
- Receives some values from the user
- c[v₁,...,v_n] receives n values along channel c and binds them to variables v_1, \dots, v_n

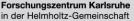
Local operation

- Deterministic method
- E.g., a database query executed or update performed by the Web server
- $y_1, ..., y_m = | (x_1, ..., x_n) executes method |$ with arguments $x_1, ..., x_n$ locally and returns $y_1, ..., y_m$

KASWS - Basic Activities

Output Communication activity

Communication activity


KASWS - Basic Activities

- Outputs values to the user
- c<x₁, ..., x_n> emits values x₁, ..., x_n along channel c

- Activities can be connected to build processes
- c, l, v, x, y all are instances of the domain ontology

KASWS - Sequence

- Activities can be connected in sequence with a.P
 - with a an activity and P a process expression
 - E.g. the process c[v₁,...,v₄]. x₁=l₁(v₁, v₂). x₂=l₂(v₃,v₄).c<x₁, x₂>.P
 - receives four values along channel c and binds them to v₁,...,v₄ then
 - uses v_1 and v_2 to calculate x_1 with local operation I_1 then
 - uses v_3 and v_4 to calculate x_2 with local operation l_2 then
 - sends x₁ and x₂ along channel c then
 - behaves like process P

y, x₁ and x₂ are instances of the domain ontology


Then the process behaves like P₁ if x₁ is at most 100 and x_2 is an old man, otherwise like P_2

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

A conditional process ω?P₁:P₂ is a process that

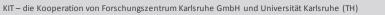
Conditional Branching

- behaves like P_1 if ω is true, otherwise like P_2
- Example process $y=I(x_1, x_2).y?P_1:P_2$
 - Suppose I returns the truth value of "LessThan(x_1 ,100) and OldMan(x_2)"
 - "LessThan" and "OldMan" are predicates and concepts from the domain ontology

IFB

Forschungszentrum Karlsruhe

n der Helmholtz-Gemeinschaft



Modeling traditional Web Services

NIFB

- A traditional Web service can be seen as a process input(argVal).c=local(argVal).c? result=computeResult.output[result]:output[error]
- Meaning:
 - Web service performs an input activity, thereby binds the arguments values provided by the client to variables,
 - then it may check whether the input values fulfill some constraints
 - if the conditions are fulfilled, then it computes the result and outputs the result else it outputs an error message

Modeling of Web Pages

IFB

- A URL may have arguments
- Form submission method is either GET or POST
 - GET is equivalent to click on a link (directly invocable) with input values encoded in the URL such as <u>http://www.google.de/search?hl=de&q=KASWS&btnG=Suche</u>
 - POST does not encode parameters in URL (not directly invocable) but sends them in body of HTTP request
- How to describe a URL with arguments?
- How to describe invocation of a URL?

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

Service Identifier and Service Invocation

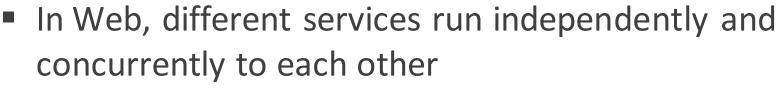
- Service identifier is a named process
 - A(x₁,..., x_n) =_{def} P with P a process expression and x₁,..., x_n the arguments
 - URL with arguments is described as a service identifier A(x₁,..., x_n) with
 - A equals to base URL
 - E.g., "http://www.google.de/search"
 - $x_1, ..., x_n$ the arguments after "?" in the URL.

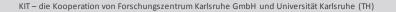
25

- E.g., "hl", "q" and "btnG"

Service Identifier and Service Invocation

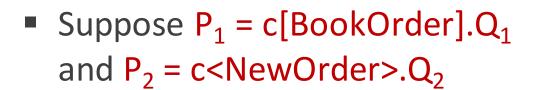
- Service invocation @A{v₁,..., v_n} denotes invocation of the service identifier A with values v₁,..., v_n for its arguments x₁,..., x_n
 - Click on a link is described as invoking a service identifier with values v₁, ..., v_n
 - E.g., "de", "KASWS" and "suche"





Data Flow among Services

- In general, there is no central control
- Data is transferred by exchanging messages
- How to describe data flow among Web services?


Composition Operator & Data Flow

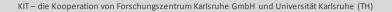
- A composition process P₁ || P₂ is a process that behaves like P₁ and P₂ running concurrently
- A message can be exchanged between two concurrently running processes when one process performs an output activity and the other an input activity at the same channel

Composition Operator & Data Flow

- Consider the process P₁ | P₂
 - Process P₁ sends a message with BookOrder as content to the channel c. It then behaves like Q₁
 - Process P₂ receives a message at channel c, and binds the received value to NewOrder. It then behaves like Q₂

User Selection

Link₃



 In addition to information, a Web page presents possibilities for further navigation

Machtkampf in Hamburg: HSV droht die Spaltung Es kann nur einen geben: Beim Hamburger SV liefern Sportchef Beiersdorfer und Präsident Hoffmann einer Machtkampf. Der Aufsichtsrat versucht zu schlichten Erfolgschancen sind gering. Ein erstes Treffen der Be brachte kein Ergebnis. Von Mike Glindmeier mehr [F	ne -d vte
Wimbledon: Haas-Match abgebrochen, Schüttler und Kohlschreiber	Link ₄
Kurzpässe: Lucio droht mit Abschied, Engelaar ist schon weg	
Formel-1-Streit: Standpunkte sind weiter verhärtet	Link ₅

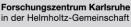
- Links and "action" of forms are the only choices a user has for moving to a next page
- How to model the alternatives a user may chose from?



Non-deterministic Choice

IFB

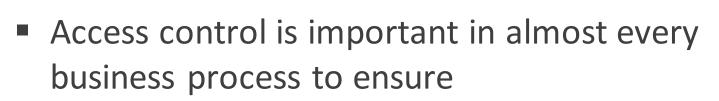
- P₁+P₂+...+P_n denotes non-deterministic choice among processes P₁,P₂,...,P_n
- E.g., the process buy+modify+cancel models following options a user may chose from
 - Buy those books in the shopping cart
 - Modify the order
 - Cancel the order
- The process Link₁+Link₂+Link₃+Link₄+Link₅ models the five links a user may chose from the example Web page

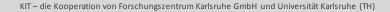


Summary of KASWS Syntax and Informal Semantics

- Input: x<v₁, ..., v_n>.P
 - Receive n objects along the channel x and bind them to variables $v_1, ..., v_n$
 - Then behave like P
- Output: x[y₁, ..., y_n].P
 - Send n objects y₁, ..., y_n along channel x
 - Then behave like P
- Local: $y_1, ..., y_m = I(x_1, ..., x_n)$.P
 - Perform local operation I with arguments x_1, \dots, x_n and outputs y_1, \dots, y_m
 - Then behave like P
- If-Then-Else: x?P:Q
 - Check whether x is true
 - If yes, then behave like P, else like Q

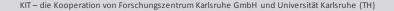
- Parallel: P||Q
 - Perform P and Q in parallel
- Non-Deterministic Choice: P+Q
 - Perform either P or Q as selected by the user
- Agent invocation: $A(x_1,...,x_n)$ with A an agent identifier (named process expression)
 - Invoke an agent identifier with parameters x₁,...,x_n
 - Enables recursion, since the defining process expression of A can contain A
- Null: 0
 - This process does nothing
 - used as termination symbol

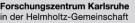



Access Control

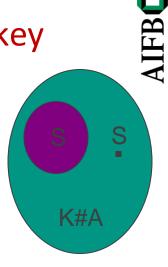
IFB

- Availability, e.g., a student must show his library card to be able to use the online library system; uncontrolled access may lead to Denial of Service attacks
- Confidentiality, e.g., a student has access to information relevant to his library account only
- Integrity, e.g., a student may not change or cause a change in the account of some other student
- Legal Correctness, e.g., an online video store must check age before lending certain videos




Access Control

- Access control should not be identity based but credential based
 - Credentials are properties that can be proven, e.g., being a student, being an adult, etc.
 - In open systems, like the Web, identities of the actors are not known or are not important
 - Students of University of Berlin should be able to borrow books from the library of University of Karlsruhe, even if the latter does not have a database of all the students of the former
 - Need for modeling credentials and credential based access control policies (ACP)
- We use a semantically enhanced variant of Simple Public Key Infrastructure (SPKI) for modeling credentials and OWL for modeling ACPs



KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

35 Forschung in der Helm

- Modeling Credentials with Semantic SPKI
- Each actor (service) is identified by a public key
- An actor defines properties that it certifies
 E.g., fast response time, high availability, etc.
- An actor issues name certificates (K, A, S)
 - K is the key of the issuing actor; A is the property name
 - K and A together (K#A) build a unique property name
 - S is the subject (name or key)
 - If S is a name: S is a subset of K#A
 - Else (S is a key): S in K#A
 - Certificate (K,A,S) has to be signed with the key K

Modeling Credential based Access Control Policies

- A trust policy P is either a key or a name
 - If P is a key, only actor with key K=P satisfies P
 - If P is a name, every actor with key K in P satisfies P

Integrating Access Control in Behaviour

NIFB

- Access control checks can be integrated as a condition in a process expression
 - A special predicate CCD(P, C) checks whether the set of certificates C fulfills the policy P
 - CCD is used as condition in IfThenElse process expressions to integrate access control in the behaviour

Summary

- Limitations of existing SWS approaches
- KASWS as formalism for describing Web services, Web sites and Web pages
 - based on process algebra
 - supports credential based access control
- Further reading material
 - Book: Communicating and Mobile Systems: The Pi Calculus; Robin Milner

38

 PhD Thesis: Formal Description of Web Services for Expressive Matchmaking; Sudhir Agarwal

