Semantic Web Technologies I

Lehrveranstaltung im WS12/13

Dr. Sebastian Rudolph Dr. Duc Thanh Tran

Einführung in RDF

Günter Ladwig

Einleitung und XML

Einführung in RDF

RDF Schema

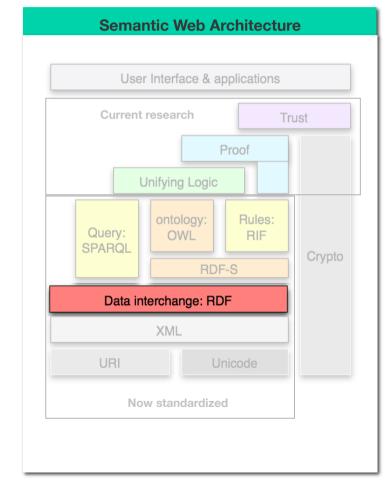
Logik - Grundlagen

Semantik von RDF(S)

OWL - Syntax und Intuition

OWL - Semantik und Reasoning

OWL 2


SPARQL - Syntax und Intuition

Konjunktive Anfragen / Einführung Regelsprachen

Regeln für OWL

Ontology Engineering

Semantic Web - Anwendungen

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Unzulänglichkeiten von XML

- Tag-Namen ambig (durch Namespaces und URIs behebbar)
- Baumstruktur nicht optimal für
 - intuitive Beschreibung der Daten
 - Informationsintegration
- Beispiel: wie kodiert man in einem Baum den Fakt:
 - "Das Buch 'Semantic Web Grundlagen' wird beim Springer-Verlag verlegt"?

Modellierungsprobleme in XML

AIFB •

"Das Buch 'Semantic Web - Grundlagen' wird beim Springer-Verlag verlegt"

etc.

RDF: Graphen statt Bäume

AIFB •

 Lösung: Darstellung durch (gerichtete Graphen)

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Allgemeines zu RDF

- "Resource Description Framework"
- W3C Recommendation (http://www.w3.org/RDF)
- RDF ist ein Datenmodell
 - ursprünglich: zur Angabe von Metadaten für Web-Ressourcen, später allgemeiner
 - kodiert strukturierte Informationen
 - universelles, maschinenlesbares
 Austauschformat

Bestandteile von RDF-Graphen

AIFB •

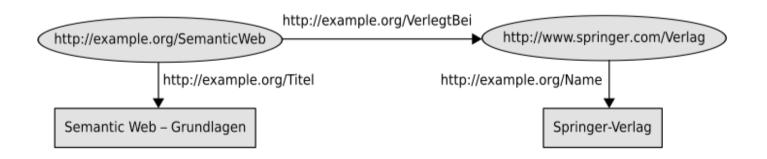
URIs

- zur eindeutigen Referenzierung von Ressourcen
- bereits im Rahmen von XML behandelt

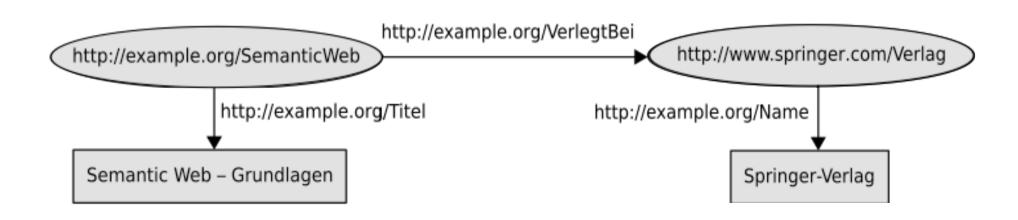
Literale

 beschreiben Datenwerte denen keine separate Existenz zukommt

leere Knoten


 erlauben Existenzaussagen über ein Individuum mit gewissen Eigenschaften ohne es zu benennen

Literale


- zur Repräsentation von Datenwerten
- Darstellung als Zeichenketten
- Interpretation erfolgt durch Datentyp
- Literale ohne Datentyp werden wie Zeichenketten behandelt

Graph als Menge von Tripeln

- verschiedene Darstellungsmöglichkeiten für Graphen
- hier verwendet: Liste von (Knoten-Kante-Knoten)-Tripeln

RDF-Tripel

AIFB •

Bestandteile eines RDF-Tripels

- angelehnt an linguistische Kategorien, aber nicht immer stimmig
- erlaubte Belegungen:

Subjekt : URI oder leerer Knoten

Prädikat: URI (auch Propertys genannt)

Objekt: URI oder leerer Knoten oder Literal

 Knoten- und Kantenbezeichner eindeutig, daher ursprünglicher Graph aus Tripel-Liste rekonstruierbar

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Einfache Syntax für RDF

AIFB 🔾

- direkte Auflistung der Tripel:
 - N3: "Notation 3" umfangreicher Formalismus
 - N-Triples: Teil von N3
 - Turtle: Erweiterung von N-Triples (Abkürzungen)
- Syntax in Turtle:
 - URIs in spitzen Klammern
 - Literale in Anführungszeichen
 - Tripel durch Punkt abgeschlossen
 - Leerzeichen und Zeilenumbrüche außerhalb von Bezeichenern werden ignoriert

Turtle Syntax: Abkürzungen

AIFB 🔾

Beispiel

 auch in Turtle können Abkürzungen für Präfixe festgelegt werden:

```
@prefix ex: <http://example.org/> .
@prefix springer: <http://springer.com/> .
ex:SemanticWeb ex:VerlegtBei springer:Verlag .
ex:SemanticWeb ex:Titel "Semantic Web - Grundlagen" .
springer:Verlag ex:Name "Springer-Verlag" .
```


Turtle Syntax: Abkürzungen

AIFB •

 mehrere Tripel mit gleichem Subjekt kann man zusammenfassen:

ebenso Tripel mit gleichem Subjekt und Prädikat:

- Turtle intuitiv gut lesbar und maschinenverarbeitbar
- aber: bessere Tool-Unterstützung und Programmbibliotheken für XML
- daher: XML-Syntax am verbreitetsten

- wie in XML werden Namensräume eingesetzt, um Tagnamen zu disambiguieren
- RDF-eigene tags haben einen festgelegten Namensraum, der Bezeichner ist standardmäßig 'rdf'

AIFB •

- Das rdf:Description-Element kodiert das Subjekt (dessen URI wird als Wert des zugehörigen rdf:about-Attributs angegeben).
- Jedes geschachtelt im rdf:Description-Element enthaltene Element steht für ein Prädikat (dessen URI ist der Elementname), das wiederum das Tripel-Objekt als rdf:Description-Element enthält.

http://example.org/SemanticWeb

http://www.springer.com/Verlag

- ungetypte Literale k\u00f6nnen als Freitext in das Pr\u00e4dikatelement eingeschlossen werden
- Verkürzte Darstellung erlaubt:
 - ein Subjekt enthält mehrere Property-Elemente
 - eine Objekt-Description dient als Subjekt für ein weiteres Tripel

```
<rdf:Description rdf:about="http://example.org/SemanticWeb">
  <ex:Titel>Semantic Web - Grundlagen</ex:Titel>
  <ex:VerlegtBei>
    <rdf:Description rdf:about="http://springer.com/Verlag">
       <ex:Name>Springer-Verlag</ex:Name>
    </rdf:Description>
                                                           http://example.org/VerlegtBei
  </ex:VerlegtBei>
                                                                                  http://www.springer.com/Verlag
                                   http://example.org/SemanticWeb
</rdf:Description>
                                               http://example.org/Titel
                                                                            http://example.org/Name
                                     Semantic Web - Grundlagen
                                                                                        Springer-Verlag
                                                                                                        21
```


- Alternative (aber semantisch gleichwertige) Darstellung für Literale als XML-Attribute
- Attributnamen sind dann die Property-URIs
- Angabe von Objekt-URIs als Wert des rdf:resource-Attributs innerhalb eines Property-Tags

```
<rdf:Description rdf:about="http://example.org/SemanticWeb"</pre>
                  ex:Titel= "Semantic Web - Grundlagen">
  <ex:VerlegtBei rdf:resource="http://springer.com/Verlag" />
</rdf:Description>
<rdf:Description rdf:about="http://springer.com/Verlag"</pre>
                  ex: Name="Springer-Verlag"
                                                               />
```


RDF/XML-Syntax: Komplikationen

- AIFB •
- Namensräume sind essentiell (nicht nur Abkürzung), da in XML-Elementen und -Attributen keine Doppelpunkte zulässig, die keine Namensräume kodieren
- Problem: in XML keine Namensräume in Attributwerten möglich (würde im Sinne eines URI-Schemas interpretiert), also z.B. verboten:

```
rdf:about="ex:SemanticWeb"
```

"Workaround" via XML-Entitäten:

Deklaration:

```
<!ENTITY ex 'http://example.org/'>
```

Verwendung:

rdf:resource="&ex;SemanticWeb"

RDF/XML-Syntax: Basis-URIs

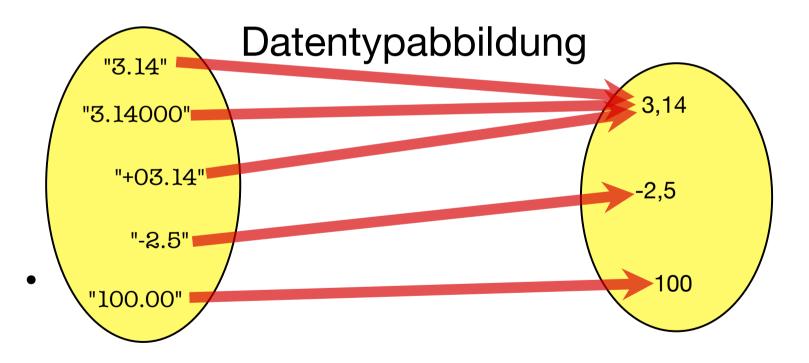
AIFB •

Arbeit mit Basis-URIs:

 Erkennung relativer URIs an Abwesenheit eines Schemateils

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen


Datentypen - Abstrakt

AIFB •

Beispiel: xsd:decimal

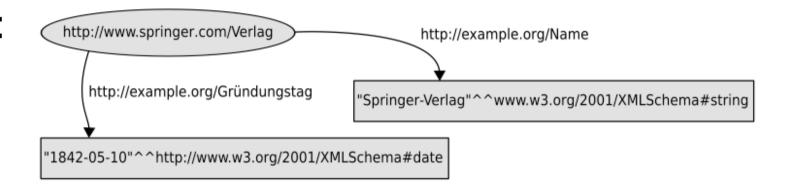
lexikalischer Bereich

Wertebereich

bzgl. xsd:decimal gilt "3.14"="+03.14"
 bzgl. xsd:string nicht!

Datentypen in RDF

AIFB 🔾


- Bisher: Literale ungetypt, wie Zeichenketten behandelt (also z.B.: "02"<"100"<"11"<"2")
- Typung erlaubt besseren (semantischen = bedeutungsgemäßen) Umgang mit Werten
- Datentypen werden durch URIs identifiziert und sind im Prinzip frei wählbar
- häufig: Verwendung von xsd-Datentypen
- Syntax:"Datenwert"^^Datentyp-URI

Datentypen in RDF - Beispiel

AIFB •

Graph:

Turtle:

XML:

Der vordefinierte Datentyp

- rdf:XMLLiteral ist einziger vordefinierter Datentyp in RDF
- bezeichnet beliebige (balancierte) XML-Fragmente
- in RDF/XML besondere Syntax zur eindeutigen Darstellung:

Sprachangaben und Datentypen

- AIFB 🔾
- Sprachinformationen beeinflussen nur ungetypte Literale
- Beispiel:
 - XML

```
<rdf:Description rdf:about="http://springer.com/Verlag">
    <ex:Name xml:lang="de">Springer-Verlag</ex:Name>
    <ex:Name xml:lang="en">Springer Science+Business Media</ex:Name>
</rdf:Description>
```

- Turtle

```
<http://springer.com/Verlag> <http://example.org/Name>
    "Springer-Verlag"@de, "Springer Science+Business Media"@en .
```


AIFB •

Sprachangaben und Datentypen

 nach RDF-Spezifikation sind demnach die folgenden Literale unterschiedlich:

 ...werden aber häufig (intuitionsgemäß) als gleich implementiert.

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

AIFB •

Kochen mit RDF:
 "Für die Zubereitung von Chutney benötigt man 450g
 grüne Mango, einen Teelöffel Cayennepfeffer, ..."

erster Modellierungsversuch:

```
@prefix ex: <http://example.org/> .
ex:Chutney ex:hatZutat "450g grüne Mango", "1TL Cayennepfeffer"
```

 nicht zufriedenstellend: Zutaten samt Menge als Zeichenkette. Suche nach Rezepten, die grüne Mango beinhalten, so nicht möglich.

AIFB 🔾

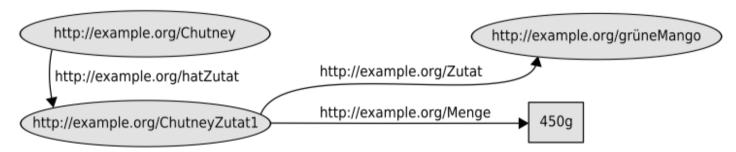
Kochen mit RDF:
 "Für die Zubereitung von Chutney benötigt man 450g grüne Mango, einen Teelöffel Cayennepfeffer, ..."

zweiter Modellierungsversuch:

 überhaupt nicht zufriedenstellend: keine eindeutige Zuordnung von konkreter Zutat und Menge mehr möglich.

AIFB 🔾

 Problem: es handelt sich um eine echte dreiwertige (auch: ternäre) Beziehung (s. z.B. Datenbanken)

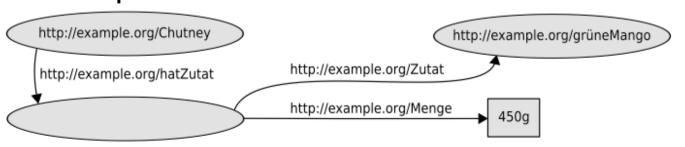

Gericht	Zutat	Menge
Chutney	grüne Mango	450g
Chutney	Cayennepfeffer	1 TL

- direkte Darstellung in RDF nicht möglich
- Lösung: Einführung von Hilfsknoten

AIFB •

- Hilfsknoten in RDF:
 - als Graph

- Turtle-Syntax (mit Verwendung von rdf:value)


Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Leere Knoten

- leere Knoten (blank nodes, bnodes) können für Ressourcen verwendet werden, die nicht benannt werden müssen (z.B. Hilfsknoten)
- können als Existenzaussagen gelesen werden
- Syntax:
 - als Graph

Leere Knoten

AIFB •

Syntax:

- RDF/XML-Syntax

- verkürzt

```
<rdf:Description rdf:about="http://example.org/Chutney">
    <ex:hatZutat rdf:parseType="Resource">
        <ex:Zutat rdf:resource="http://example.org/grüneMango" />
        <ex:Menge>450g</ex:Menge>
        </ex:hatZutat>
</rdf:Description>
```


Leere Knoten

AIFB •

Syntax:

- Turtle

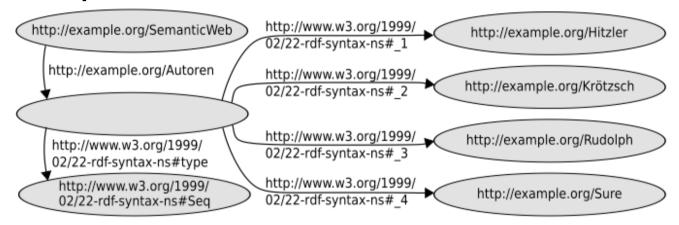
```
Oprefix ex: <http://example.org/> .
ex:Chutney    ex:hatZutat _:id1 .
_:id1    ex:Zutat    ex:grüneMango; ex:Menge    "450g" .
```

verkürzt

Agenda

- Motivation
- RDF-Datenmodell
- Syntax f
 ür RDF: Turtle und XML
- Datentypen
- mehrwertige Beziehungen
- leere Knoten
- Listen

Listen

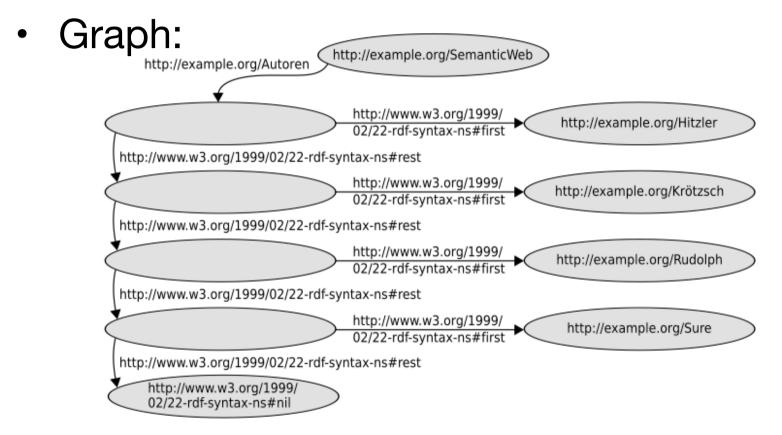

- allgemeine Datenstrukturen zur Aufzählung von beliebig vielen Ressourcen (Reihenfolge relevant), z.B. Autoren eines Buches
- Unterscheidung zwischen
 - offenen Listen (Container)
 Hinzufügen von neuen Einträgen möglich
 - geschlossenen Listen (Collections)
 Hinzufügen von neuen Einträgen nicht möglich
- Können auch mit bereits vorgestellten Ausdrucksmitteln modelliert werden, also keine zusätzliche Ausdrucksstärke!

Offene Listen (Container)

AIFB 🔾

Graph:

verkürzt in RDF/XML:


Typen offener Listen

- via rdf:type wird dem Listen-Wurzelknoten ein Listentyp zugewiesen:
 - rdf:Seq
 Interpretation als geordnete Liste (Sequenz)
 - rdf:Bag
 Interpretation als ungeordnete Menge
 in RDF kodierte Reihenfolge nicht von Belang
 - rdf:Alt
 Menge alternativer Möglichkeiten
 im Regelfall immer nur ein Listeneintrag relevant

Geschlossene Listen (Collections)

AIFB 🔾

 Idee: rekursive Zerlegung der Liste in Kopfelement und (möglicherweise leere) Restliste.

Geschlossene Listen (Collections)

AIFB 🔾

RDF/XML-Syntax

Turtle

Verbreitungsgrad von RDF

AIFB 🔾

- heute existiert Vielzahl von RDF-Tools
- Programmier-Bibliotheken für praktisch jede Programmiersprache
- frei verfügbare Systeme zum Umgang mit großen RDF-Datenmengen (sogenannte RDF Stores oder Triple Stores)
- auch kommerzielle Anbieter (z.B. Oracle) unterstützen zunehmend RDF
- Grundlage für Datenformate: RSS 1.0, XMP (Adobe), SVG (Vektorgrafikformat)

Bewertung von RDF

AIFB 🔾

- weitläufig unterstützter Standard für Speicherung und Austausch von Daten
- ermöglicht weitgehend syntaxunabhängige Darstellung verteilter Informationen in graphbasiertem Datenmodell
- reines RDF sehr "individuenorientiert"
- kaum Möglichkeiten zur Kodierung von Schemawissen
- → RDF Schema (nächste Vorlesung)