SEMANTIC WEB TECHNOLOGIES I

Lehrveranstaltung im WS08/09

M.Sc. Markus Krötzsch PD Dr. Pascal Hitzler Dr. Sebastian Rudolph

OWL - Syntax & Intuition

Dr. Sebastian Rudolph

Einleitung und Ausblick

XML und URIs

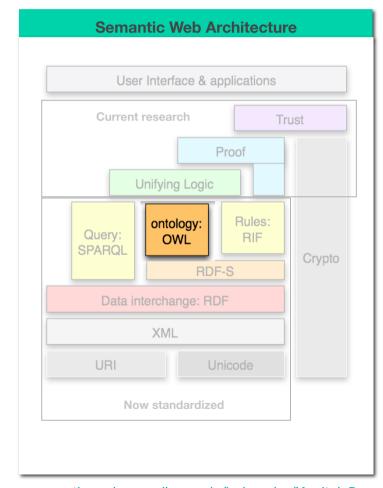
Einführung in RDF

RDF Schema

Logik - Grundlagen

Semantik von RDF(S)

OWL - Syntax und Intuition


OWL - Semantik und Reasoning

SPARQL - Syntax und Intuition

Semantik von SPARQL und konjunktive Anfragen

OWL 1.1 - Syntax und Semantik

Semantic Web und Regeln

AGENDA

AIFB •

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

ONTOLOGIE -PHILOSOPHISCH

- Begriff existiert nur in der Einzahl (es gibt also keine "Ontologien")
- bezeichnet die "Lehre vom Sein"
- zu finden bei Aristoteles (Sokrates),
 Thomas von Aquin, Descartes, Kant,
 Hegel, Wittgenstein, Heidegger, Quine, ...

Ontologie – informatisch

AIFB 🔾

Gruber (1993):

"An Ontology is a

formal specification

of a shared

conceptualization

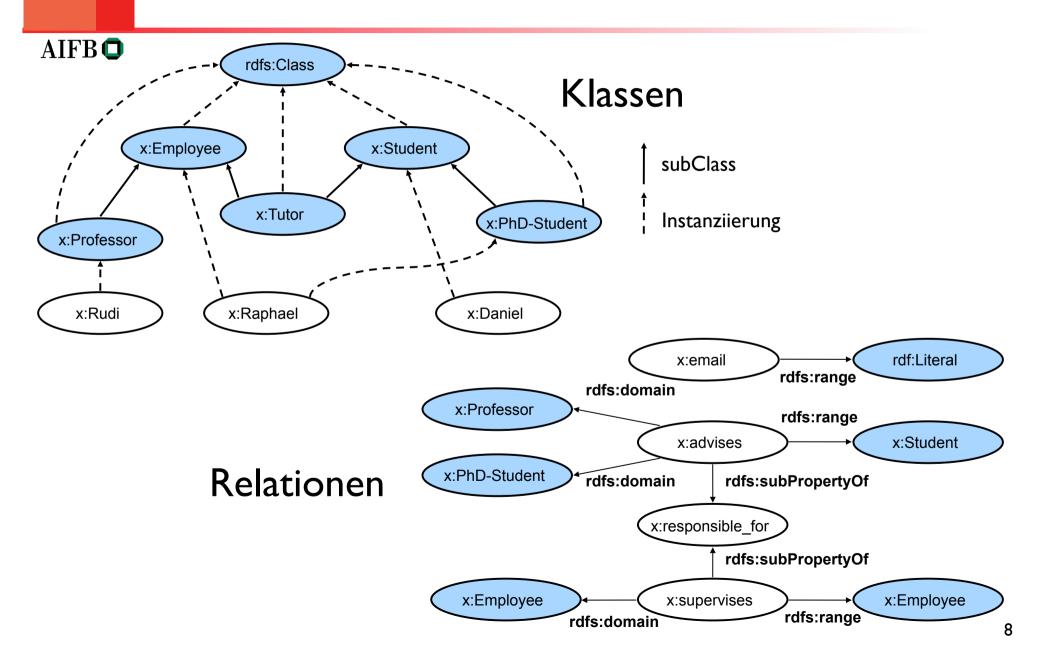
of a domain of interest"

⇒ maschinell interpretierbar

⇒ beruht auf Konsens

⇒ beschreibt Begrifflichkeiten

⇒ bezogen auf ein "Thema" (Gegenstandsbereich)


Ontologie – praktisch Einige Anforderungen

AIFB •

- Instanziierung von Klassen durch Individuen
- Begriffshierarchien (Taxonomien, "Vererbung"): Klassen, Begriffe
- binäre Relationen zwischen Individuen: Properties, Roles
- Eigenschaften von Relationen (z.B. range, transitive)
- Datentypen (z.B. Zahlen): concrete domains
- logische Ausdrucksmittel
- klare Semantik!

RDFS - EINFACHE ONTOLOGIEN

RDF Schema als Ontologiesprache?

AIFB •

- geeignet für einfache Ontologien
- Vorteil: automatisches Schlussfolgern ist relativ effizient
- aber: für komplexere Modellierungen ungeeignet
- Rückgriff auf mächtigere Sprachen, wie
 - OWL
 - F-Logik

AGENDA

AIFB •

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

OWL - Allgemeines

- W3C Recommendation seit 2004
- Semantisches Fragment von FOL
- Drei Varianten:
 OWL Lite ⊆ OWL DL ⊆ OWL Full
- Keine Reifikation in OWL DL
 → RDFS ist Fragment von OWL Full
- OWL DL ist entscheidbar entspricht der Beschreibungslogik SHOIN(D)
- W3C-Dokumente (Vorlesungswebseite) enthalten Details, die hier nicht alle angesprochen werden können.

OWL VARIANTEN

AIFB O. OWL Full

- Enthält OWL DL und OWL Lite
- Enthält als einzige OWL-Teilsprache ganz RDFS
- Semantik enthält einige Aspekte, die aus logischem Blickwinkel problematisch sind.
- Unentscheidbar.
- Wird durch aktuelle Softwarewerkzeuge nur bedingt unterstützt.

OWI DI

- Enthält OWL Lite und ist Teilsprache von OWL Full.
- Entscheidbar.
- Wird von aktuellen Softwarewerkzeugen fast vollständig unterstützt.
- Komplexität NExpTime (worst-case).

OWL Lite

- Ist Teilsprache von OWL DL und OWL Full.
- Entscheidbar.
- Wenig ausdrucksstark.
- Komplexität ExpTime (worst-case).

OWL DOKUMENTE

- sind RDF Dokumente (zumindest in der Standard-Syntax; es gibt auch andere)
- bestehen aus
 - Kopf mit allgemeinen Angaben
 - Rest mit der eigentlichen Ontologie

DER KOPF EINES OWL DOKUMENTES

AIFB •

Definition von Namespaces in der Wurzel

```
<rdf:RDF

xmlns ="http://www.semanticweb-grundlagen.de/beispielontologie#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs ="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl ="http://www.w3.org/2002/07/owl#">
...
</rdf:RDF>
```


DER KOPF EINES OWL DOKUMENTES

AIFB 🔾

Allgemeine Informationen

```
<owl:Ontology rdf:about="">
   <rdfs:comment
                       rdf:datatype="http://www.w3.org/2001/
   XMLSchema#string">
   SWRC Ontologie in der Version vom Dezember 2005
   </rdfs:comment>
   <owl:versionInfo>v0.5/owl:versionInfo>
   <owl:imports rdf:resource="http://www.semanticweb-</pre>
         grundlagen.de/foo"/>
                          rdf:resource="http://ontoware.org/
   <owl:priorVersion</pre>
   projects/swrc"/>
  </owl:Ontology>
```


DER KOPF EINES OWL DOKUMENTES

AIFB 🔾

von RDFS geerbt

rdfs:comment

rdfs:label

rdfs:seeAlso

rdfs:isDefinedBy

außerdem

owl:imports

für Versionierung

owl:versionInfo

owl:priorVersion

owl:backwardCompatibleWith

owl:incompatibleWith

owl:DeprecatedClass

owl:DeprecatedProperty

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

Klassen, Rollen und Individuen

AIFB •

Die drei Bausteine von Ontologieaxiomen.

Klassen

Vergleichbar mit Klassen in RDFS

Individuen

Vergleichbar mit Objekten in RDFS

Rollen

Vergleichbar mit Properties in RDFS

KLASSEN

AIFB •

Definition

```
<owl:Class rdf:ID="Professor"/>
```

vordefiniert:

owl: Thing

owl:Nothing

Individuen

AIFB 🔾

Definition durch Klassenzugehörigkeit

```
<rdf:Description rdf:ID="RudiStuder">
<rdf:type rdf:resource="#Professor"/>
</rdf:Description>
```

gleichbedeutend:

```
<Professor rdf:ID="RudiStuder"/>
```


ABSTRAKTE ROLLEN

AIFB 🔾

abstrakte Rollen werden definiert wie Klassen

```
<owl:ObjectProperty
rdf:ID="Zugehoerigkeit"/>
```

Domain und Range abstrakter Rollen

KONKRETE ROLLEN

AIFB •

konkrete Rollen haben Datentypen im Range

```
<owl:DatatypeProperty rdf:ID="Vorname"/>
```

Domain und Range konkreter Rollen

```
<owl:DatatypeProperty rdf:ID="Vorname">
    <rdfs:domain rdf:resource="#Person" />
    <rdfs:range rdf:resource="&xsd;string"/>
    </owl:DatatypeProperty>
```

Viele XML Datentypen können verwendet werden. Im Standard vorgeschrieben sind integer und string.

Individuen und Rollen

AIFB •

```
<Person rdf:ID="RudiStuder">
    <Zugehoerigkeit rdf:resource="#AIFB"/>
    <Zugehoerigkeit rdf:resource="#ontoprise"/>
    <Vorname rdf:datatype="&xsd;string">Rudi</Vorname>
</Person>
```

Rollen sind im allgemeinen nicht funktional.

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

Einfache Klassenbeziehungen

AIFB 🔾

```
<owl:Class rdf:ID="Professor">
    <rdfs:subClassOf
      rdf:resource="#Fakultaetsmitglied"/>
    </owl:Class>
<owl:Class rdf:ID="Fakultaetsmitglied">
      <rdfs:subClassOf rdf:resource="#Person"/>
    </owl:Class>
```

Es folgt durch Inferenz, dass Professor eine Subklasse von Person ist.

Einfache Klassenbeziehungen

AIFB •

```
<owl:Class rdf:ID="Professor">
  <rdfs:subClassOf
  rdf:resource="#Fakultaetsmitglied"/>
</owl:Class>
<owl:Class rdf:ID="Buch">
  <rdfs:subClassOf rdf:resource="#Publikation"/>
</owl:Class>
<owl:Class rdf:about="#Fakultaetsmitglied">
  <owl:disjointWith rdf:resource="#Publikation"/>
</owl:Class>
```

Es folgt durch Inferenz, dass Professor und Buch ebenfalls disjunkte Klassen sind.

Einfache Klassenbeziehungen

AIFB 🔾

```
<owl:Class rdf:ID="Buch">
  <rdfs:subClassOf rdf:resource="#Publikation"/>
</owll:Class>
<owl:Class rdf:about="#Publikation">
  <owl:equivalentClass</pre>
    rdf:resource="#Publication"/>
</owl:Class>
```

Es folgt durch Inferenz, dass Buch eine Subklasse von Publication ist.

Individuen und Klassenbeziehungen

AIFB •

```
<Buch rdf:ID="SemanticWebGrundlagen">
  <Autor rdf:resource="#PascalHitzler"/>
  <Autor rdf:resource="#MarkusKrötzsch"/>
  <Autor rdf:resource="#SebastianRudolph"/>
  <Autor rdf:resource="#YorkSure"/>
</Buch>
<owl:Class rdf:about="#Buch">
  <rdfs:subClassOf rdf:resource="#Publikation"/>
</owl:Class>
```

Es folgt durch Inferenz, dass SemanticWebGrundlagen eine Publikation ist.

Beziehungen zwischen Individuen

AIFB 🔾

Es folgt durch Inferenz, dass ProfessorStuder ein Professor ist.

Verschiedenheit von Individuen mittels

owl:differentFrom.

Beziehungen zwischen Individuen

AIFB 🔾

Abgekürzte Schreibweise anstelle der Verwendung von mehreren owl:differentFrom.

Der Einsatz von owl: AllDifferent und owl: distinct Members ist nur dafür vorgesehen.

ABGESCHLOSSENE KLASSEN

AIFB 🔾

Dies besagt, dass es nur genau diese beiden Sekretaerinnen Von Studer gibt.

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

LOGISCHE KLASSENKONSTRUKTOREN

AIFB 🔾

logisches Und (Konjunktion):

owl:intersectionOf

logisches Oder (Disjunktion):

owl:unionOf

logisches Nicht (Negation):

owl:complementOf

 Werden verwendet, um komplexe Klassen aus einfachen Klassen zu konstruieren.

Konjunktion

AIFB •

```
<owl:Class rdf:about="#SekretaerinnenVonStuder">
  <owl:equivalentClass>
    <owl:intersectionOf</pre>
    rdf:parseType="Collection">
      <owl:Class rdf:about="#Sekretaerinnen"/>
      <owl:Class
    rdf:about="#AngehoerigeAGStuder"/>
    </owl:intersectionOf>
  </owl:equivalentClass>
</owl:Class>
```

Es folgt z.B. durch Inferenz, dass alle SekretaerinnenVonStuder auch Sekretaerinnen sind.

Disjunktion

```
<owl:Class rdf:about="#Professor">
 <owl:subClassOf>
    <owl:unionOf rdf:parseType="Collection">
      <owl:Class rdf:about="#aktivLehrend"/>
      <owl:Class rdf:about="#imRuhestand"/>
    </owl:unionOf>
 </owl:subClassOf>
</owl:Class>
```

NEGATION

AIFB •

semantisch äquivalente Aussage:

```
<owl:Class rdf:about="#Fakultaetsmitglied">
        <owl:disjointWith rdf:resource="#Publikation"/>
        </owl:Class>
```


Rolleneinschränkungen (all Values From)

AIFB 🔾

dienen der Definition komplexer Klassen durch Rollen

```
<owl:Class rdf:ID="Pruefung">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:allValuesFrom rdf:resource="#Professor"/>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

D.h. *alle* Prüfer einer Prüfung müssen Professoren sein.

Rolleneinschränkungen (someValuesFrom)

AIFB 🔾

```
<owl:Class rdf:about="#Pruefung">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:someValuesFrom rdf:resource="#Person"/>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

D.h. jede Prüfung muss *mindestens einen* Prüfer haben.

Rolleneinschränkungen (Kardinalitäten)

AIFB 🔾

```
<owl:Class rdf:about="#Pruefung">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
      </owl:maxcardinality>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

Eine Prüfung kann höchstens zwei Prüfer haben.

Rolleneinschränkungen (Kardinalitäten)

AIFB 🔾

```
<owl:Class rdf:about="#Pruefung">
  <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatThema"/>
      <owl:minCardinality</pre>
     rdf:datatype="&xsd;nonNegativeInteger">
      </owl:mincardinality>
    </owl:Restriction>
  </rdfs:subClassOf>
</owl:Class>
```

Eine Prüfung muss sich über *mindestens drei* Themengebiete erstrecken.

Rolleneinschränkungen (Kardinalitäten)

AIFB 🔾

```
<owl:Class rdf:about="#Pruefung">
 <rdfs:subClassOf>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatThema"/>
      <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
    3
      </owl:cardinality>
    </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
```

Eine Prüfung muss sich über *genau drei* Themengebiete erstrecken.

Rolleneinschränkungen

(HASVALUE)

AIFB 🔾

```
<owl:Class rdf:ID="PruefungBeiStuder">
  <rdfs:equivalentClass>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:hasValue rdf:resource="#RudiStuder"/>
    </owl:Restriction>
  </rdfs:equivalentClass>
</owl:Class>
```

owl:hasValue verweist immer auf eine konkrete Instanz. Dies ist äquivalent zum Beispiel auf der nächsten Folie.

Semantic Web

Rolleneinschränkungen

(HASVALUE)

```
<owl:Class rdf:ID="PruefungBeiStuder">
  <rdfs:equivalentClass>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hatPruefer"/>
      <owl:someValuesFrom>
        <owl:oneOf rdf:parseType="Collection">
          <owl:Thing rdf:about=#RudiStuder/>
        </owl:oneOf>
      </owl:someValuesFrom
    </owl:Restriction>
  </rdfs:equivalentClass>
</owl:Class>
```


AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

ROLLENBEZIEHUNGEN

AIFB 🔾

```
<owl:ObjectProperty rdf:ID="hatPruefer">
    <rdfs:subPropertyOf
    rdf:resource="#hatAnwesenden"/>
    </owl:ObjectProperty>
```

Ebenso: owl:equivalentProperty

Rollen können auch invers zueinander sein:

```
<owl:ObjectProperty rdf:ID="hatPruefer">
    <owl:inverseOf rdf:resource="#prueferVon"/>
    </owl:ObjectProperty>
```


ROLLENEIGENSCHAFTEN

- Domain
- Range
- Transitivität, d.h.
 r(a,b) und r(b,c) impliziert r(a,c)
- Symmetrie, d.h.
 r(a,b) impliziert r(b,a)
- Funktionalität
 r(a,b) und r(a,c) impliziert b=c
- Inverse Funktionalität
 r(a,b) und r(c,b) impliziert a=c

Domain und Range

```
AIFB 🔾
```

ist gleichbedeutend mit dem Folgenden:

Domain und Range: Vorsicht!

AIFB 🔾

Es folgt nun, dass Primzahlen eine Organisation ist!

Semantic Web

ROLLENEIGENSCHAFTEN

```
<owl:ObjectProperty rdf:ID="hatKollegen">
  <rdf:type rdf:resource="&owl;TransitiveProperty"/>
  <rdf:type rdf:resource="&owl;SymmetricProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hatProjektleiter">
  <rdf:type rdf:resource="&owl;FunctionalProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="istProjektleiterFuer">
 <rdf:type
 rdf:resource="&owl;InverseFunctionalProperty"/>
</owl:ObjectProperty>
<Person rdf:ID="YorkSure">
  <hatKollegen rdf:resource="#PascalHitzler"/>
  <hatKollegen rdf:resource="#AnupriyaAnkolekar"/>
  <istProjektleiterFuer rdf:resource="#SEKT"/>
</Person>
<Projekt rdf:ID="SmartWeb">
  <hatProjektleiter rdf:resource="#PascalHitzler"/>
  <hatProjektleiter rdf:resource="#HitzlerPascal"/>
</Projekt>
```


FOLGERUNGEN AUS DEM BEISPIEL

AIFB •

•AnupriyaAnkolekar hatKollegen YorkSure

• Anupriya Ankolekar hat Kollegen Pascal Hitzler

• PascalHitzler owl:sameAs HitzlerPascal

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

OWL VARIANTEN

AIFB O. OWL Full

- Enthält OWL DL und OWL Lite
- Enthält als einzige OWL-Teilsprache ganz RDFS
- Semantik enthält einige Aspekte, die aus logischem Blickwinkel problematisch sind.
- Unentscheidbar.
- Wird durch aktuelle Softwarewerkzeuge nur bedingt unterstützt.

OWI DI

- Enthält OWL Lite und ist Teilsprache von OWL Full.
- Entscheidbar.
- Wird von aktuellen Softwarewerkzeugen fast vollständig unterstützt.
- Komplexität NExpTime (worst-case).

OWL Lite

- Ist Teilsprache von OWL DL und OWL Full.
- Entscheidbar.
- Wenig ausdrucksstark.
- Komplexität ExpTime (worst-case).

OWL Full

- Uneingeschränkte Nutzung aller OWL und RDFS-Sprachelemente (muss gültiges RDFS sein).
- Schwierig z.B.: nicht vorhandene Typentrennung (Klassen, Rollen, Individuen), dadurch:
 - -owl: Thing dasselbe wie rdfs: resource
 - -owl:Class dasselbe wie rdfs:Class
 - -owl:DatatypeProperty Subklasse von
 - owl:ObjectProperty
 - -owl:ObjectProperty dasselbe wie
 - rdf:Property

Beispiel für Typendurchmischung in OWL Full

AIFB •

```
<owl:Class rdf:about="#Buch">
  <englischerName rdf:datatype="&xsd;string">
   book
  </englischerName>
  <franzoesischerName rdf:datatype="&xsd;string">
    livre
  </franzoesischerName>
</owl:Class>
```

Inferenzen über solche Konstrukte werden oft nicht wirklich benötigt.

OWL DL

AIFB •

- Nur Verwendung von explizit erlaubten RDFS
 Sprachelementen (z.B. die in unseren Beispielen).

 Nicht erlaubt: rdfs:Class, rdfs:Property
- Typentrennung. Klassen und Rollen müssen explizit deklariert werden.
- Konkrete Rollen dürfen nicht als transitiv, symmetrisch, invers oder invers funktional deklariert werden.
- Zahlenrestriktionen dürfen nicht mit transitiven Rollen, deren Subrollen, oder Inversen davon verwendet werden.

OWL LITE

AIFB •

- alle Einschränkungen für OWL DL
- außerdem:
 - nicht erlaubt: oneOf, unionOf, complementOf, hasValue, disjointWith
 - Zahlenrestriktionen nur mit 0 und 1 erlaubt.
 - Einige Einschränkungen zum Auftreten von anonymen (komplexen) Klassen, z.B. nur im Subjekt von rdfs:subClassOf.

AGENDA

- Motivation
- OWL Allgemeines
- Klassen, Rollen und Individuen
- Klassenbeziehungen
- komplexe Klassen
- Eigenschaften von Rollen
- OWL Varianten
- Anfragen an OWL-Ontologien

TERMINOLOGISCHE ANFRAGEN AN OWL (NUR KLASSEN UND ROLLEN)

- Klassenäquivalenz
- Subklassenbeziehung
- Disjunktheit von Klassen
- globale Konsistenz (Erfüllbarkeit, Widerspruchsfreiheit)
- Klassenkonsistenz: Eine Klasse ist inkonsistent, wenn sie äquivalent zu owl:Nothing ist - dies deutet oft auf einen Modellierungsfehler hin:

Assertionale Anfragen an OWL (mit Individuen)

- Instanzüberprüfung: Gehört gegebenes Individuum zu gegebener Klasse?
- Suche nach allen Individuen, die in einer Klasse enthalten sind.
- Werden zwei gegebene Individuen durch Rolle verknüpft?
- Suche nach allen Individuenpaaren, die durch eine Rolle verknüpft sind.
- ...Vorsicht: es wird nur nach "beweisbaren" Antworten gesucht!

OWL Werkzeuge

- Editoren
 - Protegé, http://protege.stanford.edu
 - SWOOP, http://www.mindswap.org/2004/SWOOP/
 - OWL Tools, http://owltools.ontoware.org/
- Inferenzmaschinen
 - Pellet, http://www.mindswap.org/2003/pellet/index.shtml
 - KAON2, http://kaon2.semanticweb.org
 - FACT++, http://owl.man.ac.uk/factplusplus/
 - Racer, http://www.racer-systems.com/
 - Cerebra, http://www.cerebra.com/index.html

OWL Sprachelemente

AIFB •

- Kopf
- rdfs:comment
- rdfs:label
- rdfs:seeAlso
- rdfs:isDefinedBy
- owl:versionInfo
- owl:priorVersion
- owl:backwardCompatibleWith
- owl:incompatibleWith
- owl:DeprecatedClass
- owl:DeprecatedProperty
- owl:imports

Beziehungen zwischen Individuen

- owl:sameAs
- owl:differentFrom
- owl:AllDifferent (zusammen mit

owl:distinctMembers)

Vorgeschriebene Datentypen

- xsd:strong
- xsd:integer

OWL Sprachelemente

AIFB •

- Klassenkonstruktoren und beziehungen
- owl:Class
- owl:Thing
- owl:Nothing
- rdfs:subClassOf
- owl:disjointWith
- owl:equivalentClass
- owl:intersectionOf
- owl:unionOf
- owl:complementOf

Rollenrestriktionen

- owl:allValuesFrom
- owl:someValuesFrom
- owl:hasValue
- owl:cardinality
- owl:minCardinality
- owl:maxCardinality
- owl:oneOf

OWL Sprachelemente

AIFB •

- Rollenkonstruktoren, -beziehungen und eigenschaften
- owl:ObjectProperty
- owl:DatatypeProperty
- rdfs:subPropertyOf
- owl:equivalentProperty
- owl:inverseOf
- rdfs:domain
- rdfs:range
- rdf:resource="&owl;TransitiveProperty"
- rdf:resource="&owl;SymmetricProperty"
- rdf:resource="&owl; Functional Property"
- rdf:resource="&owl; InverseFunctionalProperty"

Weiterführende Literatur

AIFB •

- http://www.w3.org/2004/OWL/zentrale W3C Webseite für OWL.
- http://www.w3.org/TR/owl-features/ Überblick über OWL.
- http://www.w3.org/TR/owl-ref/vollständige Beschreibung der OWL-Sprachkomponenten.
- http://www.w3.org/TR/owl-guide/ zeigt, wie OWL zur Wissensmodellierung verwendet werden kann.
- http://www.w3.org/TR/owl-semantics/ beschreibt die Semantik von OWL, die wir auf andere Weise später behandeln werden. Es beschreibt außerdem die abstrakte Syntax für OWL DL, die wir hier später noch ansprechen.
- Deutsche Übersetzungen mancher W3C Dokumente findet man unter http://www.w3.org/2005/11/Translations/Lists/ListLang-de.html