
Semantic Web
Technologies I!

Lehrveranstaltung im WS10/11!

Dr. Andreas Harth!
Dr. Sebastian Rudolph!

OWL – Syntax & Intuition!
"2/2 !

Dr. Sebastian Rudolph!

Semantic Web Architecture

Now standardized

Current research

entspricht Kapitel 5 des Buches „Semantic Web - Grundlagen“ - siehe auch http://www.semantic-web-grundlagen.de/index.php/Kapitel_5

www.semantic-web-grundlagen.de	

Outline

•  Advanced Features of OWL

-  more class constructors

-  extended property modeling

-  handling of data values

-  OWL Profiles

More Complex Classes:
Qualified At-Least Restriction
•  [rdf:type
owl:Restriction ; �

 owl:minQualifiedCardinality

"n"^^xsd:nonNegativeInteger ;�
 owl:onProperty prop ; owl:onClass
class
]

•  Example:
[rdf:type owl:Restriction ; owl:minQualifiedCardinality

"2"^^xsd:nonNegativeInteger ;�
 owl:onClass
ex:Male;

owl:onProperty
ex:parentOf]

More Qualified Cardinalities

•  in analogy to at-least restrictions:

-  at-most:
 owl:maxQualifiedCardinality

-  exact cardinality:
 owl:QualifiedCardinality

•  [rdf:type

owl:Restriction ;�
 owl:onProperty
prop ;�
 owl:hasSelf

"true"^^xsd:boolean]

•  Example: [
rdf:type

owl:Restriction ;�

owl:onProperty
 ex:hasKilled ; �

owl:hasSelf

"true"^^xsd:boolean]

More Complex Classes:
Self Restriction

Property Chain Axioms
•  prop owl:propertyChainAxiom (prop1, ... , propn) .

•  Example:

ex:siblingOf owl:propertyChainAxiom �

(ex:childOf, ex:parentOf) .

Decidability problems

•  role chain axioms can easily lead to
undecidability

•  in order to retain decidability, two global
constraints are imposed on OWL DL
ontologies:

-  the set of property chain axioms and
subproperty statements must be regular

-  properties used in cardinality and self
restrictions must be simple properties

•  in the following , we abbreviate
R owl:propertyChainAxiom (S1 ... Sn). by S1 ± ... ± Sn v R �
S owlrdfs:subPropertyOf R. by
 S v R

•  regularity restriction: there must be a strict linear order ≺ on
the properties such that every property chain or subproperty
axiom has to have one of the following forms where Si ≺ R for
all i= 1, 2, . . . , n:

R ± R v R [owl:inverseOf R] v R S1 ± S2 ± ... ± Sn v R

R ± S1 ± S2 ± ... ± Sn v R S1 ± S2 ± ... ± Sn ± R v R

•  Example 1: R ± S v R S ± S v S R ± S ± R v T
regular with order S ≺ R ≺ T

•  Example 2: R ± T ± S v T
not regular because form not admissible

•  Example 3: R ± S v S S ± R v R
not regular because no adequate order exists

Property Chain Axioms: Regularity

•  combining property chain axioms and cardinality or self
restrictions may lead to undecidability

•  restriction: use only simple properties in cardinality
expressions (i.e. those which cannot be – directly or
indirectly – inferred from property chains)

•  technically:

-  for any property chain axiom S1 ± S2 ± ... ± Sn v R with n>1,
R is non-simple

-  for any subproperty axiom S v R with S non-simple, R is
non-simple

-  all other properties are simple

•  Example:
Q ± P v R R ± P v R R v S P v R Q v S
non-simple: R, S simple: P, Q

Property Chain Axioms: Simplicity

Property Characteristics

•  OWL also allows for specifying that properties
are:

-  disjoint from another

-  functional

-  inverse functional

-  transitive

-  symmetric syntactic sugar w.r.t.

-  asymmetric already introduced

-  reflexive modeling features

-  irreflexive
1
1	

Datatypes in OWL

•  like in RDF, properties can also be
used to associate individuals with data
values:

 ex:john ex:hasAge “42“^^xsd:integer .

1
2	

13	

Datatype Ranges!

•  Property ranges for datatype properties:"
Datatypes (e.g. from XML Schema)

•  Example:"

•  Interpretation of datatypes defined in XML Schema (OWL adds some
clarifications, e.g. “Do floating point and integer numbers overlap?”)

•  Attention: datatypes still have to be explicitly specified in RDF and OWL!
Given the above axiom, we find:"

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
...

ex:hasAge rdfs:range xsd:integer .

ex:jean ex:hasAge “17”^^xsd:integer . ← Correct
ex:paul ex:hasAge “23”^^xsd:decimal . ← Correct
ex:claire ex:hasAge “42” . ← Inconsistent!

14	

Defining New Datatypes !

•  XML Schema has ways of restricting datatypes "
→ datatype facets

•  Example:"

•  Possible facets depend on datatype, some facets
restricted in OWL → see specs for details

ex:personAge owl:equivalentClass
 [rdf:type rdfs:Datatype;
 owl:onDatatype xsd:integer;
 owl:withRestrictions (
 [xsd:minInclusive "0"^^xsd:integer]
 [xsd:maxInclusive "150"^^xsd:integer]
)
] .

15	

Simple Data Integration in OWL!

•  Practical problem: given ontologies from different sources,
which URIs refer to the same individuals?

•  Typical approaches in OWL:

–  Explicitly specify equality with owl:sameAs

–  Use inverse functional properties (“same values → same individual”)

•  Problems:

–  owl:sameAs requires explicit mappings (rare on the Web)

–  OWL DL disallows inverse functional datatype properties"
(complicated interplay with datatype definitions!)

–  Only one property used globally for identification, no property combinations
(Example: “All ESSLLI participants with the same name and birthday are the
same.”)

16	

OWL 2 Keys!

•  OWL 2 provides a way to model"
“All ESSLLI students with same name and birthday are the same.“

•  → Keys

•  Restriction: Keys apply only to named individuals – objects of the
interpretation domain to which a URI refers.

•  More explicitly:

•  If there are two URIs u and v, and there is some name n and birthday
b such that

•  "

then we conclude: u owl:sameAs v .

ex:ESSLLIStudent owl:hasKey (ex:name, ex:birthday) .

u rdf:type ex:ESSLLIStudent; ex:name n ; ex:birthday b .
v rdf:type ex:ESSLLIStudent; ex:name n ; ex:birthday b .

17	

OWL 2 Profiles!

•  Design principle for profiles: "
Identify maximal OWL 2 sublanguages that are still implementable in
PTime.

•  Main source of intractability: non-determinism (requires guessing/
backtracking)

•  owl:unionOf, or owl:complementOf + owl:intersectionOf

•  Max. cardinality restrictions

•  Combining existentials (owl:someValuesFrom) and universals
(owl:allValuesFrom) in superclasses

•  Non-unary finite class expressions (owl:oneOf) or datatype
expressions

→ features that are not allowed in any OWL 2 profile

18	

OWL 2 EL!

•  OWL profile based on description logic EL++

•  Intuition: focus on terminological expressivity used for light-weight
ontologies

•  Allow owl:someValuesFrom (existential) but not
owl:allvaluesFrom (universal)

•  Property domains, class/property hierarchies, class intersections,
disjoint classes/properties, property chains, owl:hasSelf,
owl:hasValue, and keys fully supported

•  No inverse or symmetric properties

•  rdfs:range allowed but with some restrictions

•  No owl:unionOf or owl:complementOf

•  Various restrictions on available datatypes

19	

OWL 2 EL: Features!

•  Standard reasoning in OWL 2 EL:"
PTime-complete

•  Used by practically relevant ontologies:"
Prime example is SNOMED CT"
(clinical terms ontology with classes and properties in the order
of 10^5)

•  Fast implementations available:"
full classification of SNOMED-CT in <10min;"
real-time responsivity when preprocessed (modules)

20	

OWL 2 QL!

•  OWL profile that can be used to query data-rich applications:

•  Intuition: use OWL concepts as light-weight queries, allow query answering using
rewriting in SQL on top of relational DBs

•  Different restrictions on subclasses and superclasses of rdfs:SubclassOf:

–  subclasses can only be class names or owl:someValuesFrom (existential) with unrestricted
(owl:Thing) filler

–  superclasses can be class names, owl:someValuesFrom or owl:intersectionOf with
superclass filler (recursive), or owl:complementOf with subclass filler

•  Property hierarchies, disjointness, inverses, (a)symmetry supported, restrictions on
range and domain

•  Disjoint or equivalence of classes only for subclass-type expressions

•  No owl:unionOf, owl:allValuesFrom, owl:hasSelf, owl:hasKey,
owl:hasValue, owl:oneOf, owl:sameAs, owl:propertyChainAxiom,
owl:TransitiveProperty, cardinalities, functional properties

21	

OWL 2 QL: Features!

•  Standard reasoning in OWL 2 QL:"
PTime, for some cases even LogSpace (<PTime)

•  Convenient light-weight interface to legacy data

•  Fast implementations on top of legacy database
systems (relational or RDF):"
highly scalable to very large datasets"

22	

OWL 2 RL!

•  OWL profile that resembles an OWL-based rule language:

•  Intuition: subclass axioms in OWL RL can be understood as rule-like implications
with head (superclass) and body (subclass)

•  Different restrictions on subclasses and superclasses of rdfs:SubclassOf:

–  subclasses can only be class names, owl:oneOf, owl:hasValue, owl:intersectionOf,
owl:unionOf, owl:someValuesFrom if applied only to subclass-type expressions

–  superclasses can be class names, owl:allValuesFrom or owl:hasValue; also max.
cardinalities of 0 or 1 are allowed, all with superclass-type filler expressions only

•  Property domains and ranges only for subclass-type expressions; property
hierarchies, disjointness, inverses, (a)symmetry, transitivity, chains, (inverse)
functionality, irreflexivity fully supported

•  Disjoint classes and classes in keys need subclass-type expressions, equivalence
only for expressions that are sub- and superclass-type, no restrictions on
owl:sameAs

•  Some restrictions on available datatypes

23	

OWL 2 RL: Features!

•  Standard reasoning in OWL 2 RL:"
PTime-complete

•  Rule-based reading simplifies modeling and
implementation:"
even naïve implementations can be useful

•  Fast and scalable implementations exist

24	

Do We Really Need So Many OWLs?!

•  Three new OWL profiles with somewhat complex descriptions …
why not just one?

•  The union of any two of the profiles is no longer light-weight!"
QL+RL, QL+EL, RL+EL all ExpTime-hard

•  Restricting to fewer profiles = giving up potentially useful feature
combinations

•  Rationale: profiles are “maximal”"
(well, not quite) well-behaved"
fragments of OWL 2"
→ Pick suitable feature set for"
 applications

•  In particular, nobody is forced "
to implement all of a profile

25	

OWL in Practice: Tools!

•  Editors (http://semanticweb.org/wiki/Editors)

–  Most common editor: Protégé 4

–  Other tools: TopBraid Composer ($), NeOn toolkit

–  Special purpose apps, esp. for light-weight ontologies (e.g. FOAF editors)

•  Reasoners (http://semanticweb.org/wiki/Reasoners)

–  OWL DL: Pellet, HermiT, FaCT++, RacerPro ($)

–  OWL EL: CEL, SHER, snorocket ($), ELLY (extension of IRIS)

–  OWL RL: OWLIM, Jena, Oracle Prime (part of O 11g) ($),

–  OWL QL: Owlgres, QuOnto, Quill

•  Many tools use the OWL API library (Java)

•  Note: many other Semantic Web tools are found online

26	

Non-standard Reasoning in OWL!

•  There is more to do than editing and inferencing:

•  Explanation: reasoning task of providing axiom sets to explain a
conclusion (important for editing and debugging)

•  Conjunctive querying: check entailment of complex query patterns (cf.
Lecture 5)

•  Modularisation: extract sub-ontologies that suffice for (dis)proving a
certain conclusion

•  Repair: determine ways to repair inconsistencies (related to explanation)

•  Least Common Subsumer: assuming that class unions are not
available, find the smallest class expression that subsumes two given
classes

•  Abduction: given an observed conclusion, derive possible input facts
that would lead to this conclusion

•  …

27	

Overview: Essential OWL
Features!

Feature Related OWL vocabulary FOL DL	

top/bottom class owl:Thing/owl:Nothing (axiomatise) ⊤/⊥	

Class intersection owl:intersectionOf ∧ ⊓	

Class union owl:unionOf ∨ ⊔	

Class complement owl:complementOf ¬ ¬	

Enumerated class owl:oneOf (ax.	
 with	
 ≈)	
 {a}	

Property restrictions owl:onProperty
Existential owl:someValueFrom ∃y … ∃R.C

Universal owl:allValuesFrom ∀y … ∀R.C

Min. cardinality owl:minQualifiedCardinality
owl:onClass

∃y1…yn. … ≥n S.C

Max. cardinality owl:maxQualifiedCardinality
owl:onClass

∀y1…yn+1.
… → …

≤n S.C

Local reflexivity owl:hasSelf R(x,x) ∃R.Self

28	

Overview: Essential OWL
Features!

Feature Related OWL vocabulary DL

Property chain owl:propertyChainAxiom ◦	

Inverse owl:inverseOf R–

Key owl:hasKey rule, see Lecture 5

Property disjointness owl:propertyDisjointWith Dis(R,S)

Property characteristics rdf:hasType

Symmetric owl:SymmetricProperty Sym(R)

Asymmetric owl:AsymmetricProperty Asy(R)

Reflexive owl:ReflexiveProperty Ref(R)

Irreflexive owl:IrreflexiveProperty Irr(R)

Transitivity owl:TransitiveProperty Tra(R)

Subclass rdfs:subClassOf ∀x.C(x)	
 →	
 D(x)	
 C⊑D

Subproperty	
 rdfs:subPropertyOf ∀x,y.R(x,y)	
 →	
 S(x,y)	
 R⊑S

29	

Summary and Outlook!

•  OWL: expressive ontology language with practical impact

•  Structurally representable in RDF (e.g. using Turtle syntax)

•  Reasoning typical based on extensional (“direct”) semantics:

–  closely related to description logics and first-order logic (with equality)

–  different from RDF semantics, but compatible for many purposes

•  Various flavours for different applications:

–  OWL Full provides RDF-based semantics (undecidable)

–  OWL DL decidable but complex (N2ExpTime)

–  OWL profiles for light-weight reasoning (in Ptime)

30	

Further Reading!
•  P. Hitzler, S. Rudolph, M. Krötzsch: Foundations of Semantic Web Technologies.

CRC Press, 2009. (Chapter 4"
and 5 closely related to this lecture)

•  W3C OWL Working Group: OWL 2 Web Ontology LanguageDocument Overview.
See http://www.w3.org/TR/owl2-overview/. W3C Working Draft, Jun 11 2009.
(overview of official OWL 2 documents)

•  P. Hitzler, M. Krötzsch, B. Parsia, P.F. Patel-Schneider, S. Rudolph (editors): OWL 2
Web Ontology Language Primer. See http://www.w3.org/TR/owl2-primer/. W3C
Working Draft, Jun 11 2009. (informative introduction to OWL 2)

•  B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz: OWL 2 Web
Ontology Language Profiles. See http://www.w3.org/TR/owl2-profiles/.W3C
Candidate Recommendation, Jun 11 2009. (definition of OWL 2 profiles)

